
numpy.mgrid — NumPy v2.3 Manual
numpy.mgrid # numpy.mgrid = <numpy.lib._index_tricks_impl.MGridClass object> # An instance which returns a dense multi-dimensional “meshgrid”. An instance which returns a dense (or fleshed out) …
numpy.mgrid — NumPy v1.23 Manual
numpy.mgrid # numpy.mgrid = <numpy.lib.index_tricks.MGridClass object> # nd_grid instance which returns a dense multi-dimensional “meshgrid”. An instance of numpy.lib.index_tricks.nd_grid which …
numpy.mgrid — NumPy v1.22 Manual
numpy.mgrid ¶ numpy.mgrid = <numpy.lib.index_tricks.MGridClass object> ¶ nd_grid instance which returns a dense multi-dimensional “meshgrid”. An instance of numpy.lib.index_tricks.nd_grid which …
numpy.meshgrid — NumPy v2.3 Manual
See also mgrid Construct a multi-dimensional “meshgrid” using indexing notation. ogrid Construct an open multi-dimensional “meshgrid” using indexing notation. How to index ndarrays
numpy.mgrid — NumPy v1.25 Manual
numpy.mgrid # numpy.mgrid = <numpy.lib.index_tricks.MGridClass object> # An instance which returns a dense multi-dimensional “meshgrid”. An instance which returns a dense (or fleshed out) mesh-grid …
numpy.ogrid — NumPy v2.3 Manual
See also mgrid like ogrid but returns dense (or fleshed out) mesh grids meshgrid return coordinate matrices from coordinate vectors r_ array concatenator How to create arrays with regularly-spaced …
How to create arrays with regularly-spaced values - NumPy
mgrid # numpy.mgrid can be used as a shortcut for creating meshgrids. It is not a function, but when indexed, returns a multidimensional meshgrid.
numpy.meshgrid — NumPy v1.23 Manual
See also mgrid Construct a multi-dimensional “meshgrid” using indexing notation. ogrid Construct an open multi-dimensional “meshgrid” using indexing notation.
Search - NumPy v2.2 Manual
Examples >>> import numpy as np >>> a = np. mgrid [:5, :5] [0] >>> A = np.fft.rfft2 (a) >>> np.fft.irfft2 (A, s=a.shape) array ( [ [0., 0., 0., 0., 0.], [1., 1., 1....
numpy.fft.fft2 — NumPy v2.3 Manual
>>> import numpy as np >>> a = np.mgrid[:5, :5][0] >>> np.fft.fft2(a) array([[ 50. +0.j , 0. +0.j , 0. +0.j , # may vary 0. +0.j , 0. +0.j ], [-12.5+17.20477401j, 0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j ], [-12.5 +4.0614962j …